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Abstract—Generation of subject-specific 3D finite element
(FE) models requires the processing of numerous medical
images in order to precisely extract geometrical information
about subject-specific anatomy. This processing remains
extremely challenging. To overcome this difficulty, we
present an automatic atlas-based method that generates
subject-specific FE meshes via a 3D registration guided by
Magnetic Resonance images. The method extracts a 3D
transformation by registering the atlas’ volume image to the
subject’s one, and establishes a one-to-one correspondence
between the two volumes. The 3D transformation field
deforms the atlas’ mesh to generate the subject-specific FE
mesh. To preserve the quality of the subject-specific mesh, a
diffeomorphic non-rigid registration based on B-spline free-
form deformations is used, which guarantees a non-folding
and one-to-one transformation. Two evaluations of the
method are provided. First, a publicly available CT-database
is used to assess the capability to accurately capture the
complexity of each subject-specific Lung’s geometry. Second,
FE tongue meshes are generated for two healthy volunteers
and two patients suffering from tongue cancer using MR
images. It is shown that the method generates an appropriate
representation of the subject-specific geometry while preserv-
ing the quality of the FE meshes for subsequent FE analysis.
To demonstrate the importance of our method in a clinical
context, a subject-specific mesh is used to simulate tongue’s
biomechanical response to the activation of an important
tongue muscle, before and after cancer surgery.

Keywords—Tongue model, Patient-specific, Finite element

model, Mesh morphing, Volume image registration, Biome-

chanical simulation.

INTRODUCTION

FE models are used extensively in computer-aided
surgery. For such contexts subject-specific models need
to be generated. However, the generation of each mesh
requires the processing of numerous medical images in
order to precisely extract geometrical information
about subject-specific anatomy. This can be extremely
time consuming because it involves segmentation and
meshing processes. In the literature a wide range of
scenarios is reported under different levels of
automation, in order to refine the results by improving
segmentation, surface creation and/or meshing pro-
cesses. The primary purpose of all these studies is to
make FE mesh generation compatible with the time
constraints of the clinical practice where the pre/intra-
operative time-window is short and clinician avail-
ability is limited. Below a brief overview of these efforts
is provided and our contribution to this problem is
described.

Two main strategies exist to improve volumetric
mesh generation algorithms: Meshing-based proce-
dures, and Atlas-based mesh morphing techniques. A
large variety of methods published in the literature and
of commercial software products are classified among
the Meshing-based procedures; most of them use
tetrahedral meshing algorithms.48,63 3D surface mod-
els, usually obtained with segmentation techniques, are
inputs for these methods and some post-processing
techniques (e.g., smoothing, cleanup and refinement)
might be necessary. Some of these methods generate
3D FE meshes including anatomical sub-structures
inside.19,37,47,66,67 Mention should also be made of the
numerical locking issues that may occur in FE analysis
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of incompressible or nearly-incompressible materials
(e.g., soft tissues).54 Hexahedral FE meshes are pre-
ferred to tetrahedral ones7 for this kind of materials.
However, automatic hexahedral mesh generation,32,62

is a challenging research topic.58,61 Current hexahedral
meshing algorithms commonly require user interven-
tion and are labor intensive.46 An alternative to all-
tetrahedral and all-hexahedral element meshes is to use
mixed-element meshing. The overall idea is to take
advantage of the benefits of both element types. We
recently reported a new automatic meshing tech-
nique.41 This algorithm was used to generate the atlas’
tongue mesh.

Atlas-based mesh morphing techniques show a great
potential for subject-specific FE mesh generation and
are increasingly employed.12,15,20,27,57 These methods
first need an atlas’ FE mesh, which can be designed
following usual procedures. The subsequent step is the
extraction of information related to specific region of
interest (ROI) from subject’s medical images. It can be
extracted in the form of contours, 3D surface models,
or a set of land-marks. Finally, the atlas’ FE mesh is
‘‘morphed’’ onto the ROI’s information and subject-
specific meshes are automatically generated.

Alternatively, with the aim of avoiding extraction of
formal geometrical description in the ROIs, which can
be complicated, some methods register either an atlas’
binary mask previously generated from the atlas’ mesh,
or idealized synthetic images of the atlas onto the
subject’s images. These methods extract a 3D dis-
placement field that can be used to morph the atlas’ FE
mesh.6,35,36 The main advantage of these techniques is
that all the meshes inherit the same structure from the
atlas’ FE mesh (same nodes and same elements’
organization). It should be noted that after morphing
the quality of the meshes may decrease, and post-
processing refinement procedures are often required.13

The level of distortion is also depending on the com-
plexity of the atlas’ and subject’s geometries. Some
researchers have employed meshing-based procedures
and atlas-based FE mesh morphing techniques simul-
taneously.30

Regardless of these improvements, most of these
methods need extraction of some prior-knowledge
about the organ’s geometry from subjects’ medical
images. This is a challenging task, which can be time-
consuming, especially for some applications requiring
segmentation. In some cases the segmentation proce-
dure is sensitive to noise or image quality. In such cases
there is a need for methods that avoid the segmenta-
tion step. An atlas-based mesh morphing techniques
offer an interesting alternative, if the 3D transforma-
tion that morphs the atlas’ mesh into the subject’s
mesh can be inferred without any segmentation. Our
objective is to propose a method that enables auto-

matic generation of subject-specific FE meshes by
intensity-based image registration.

Our team has been working on the generation of
subject-specific FE meshes over a long period of time.
As compared to usual strategies the primary
improvement was achieved by introducing the Mesh-
Matching algorithm.15 However, the generated meshes
were prone to distortions (see Refs. 12,13,27,30 for
more details). Hence, the Mesh-Matching method was
improved into the Mesh-Match-and-Repair (MMRep)
algorithm12 (Fig. 1). A ROI is segmented in the sub-
ject’s images and its 3D surface is used as the target to
deform the atlas’ FE mesh. It was shown that the level
of distortion can be dramatically reduced, if the
transformation satisfies three main constraints: being

C1-differentiable, non-folding (a local property ensur-
ing that space orientation is preserved) and invertible;

these properties specify a C1-diffeomorphism.12,14

Our method (Fig. 2) takes inspiration from these

pioneer works. In particular, it has to be a C1-diffeo-
morphism, in order to avoid unacceptable spatial dis-
tortions. It includes two major modules:

– Computing without any segmentation the dis-
placement fields that can be used to register the
volumetric atlas’ images onto the subject’s
images;

– Morphing the atlas’ FE mesh using the
obtained displacement fields.

More specifically, at first, an initial Rigid/Affine
transformation is performed to roughly approximate
the global deformation between the atlas’ and the
subject’s volume. Then, a non-rigid registration is done
to locally refine the deformations from the atlas to the
subject. The subject-specific FE mesh is then generated
by deforming the atlas’ FE mesh using the derived 3D
transformation. Finally, the qualities of the morphed
meshes are evaluated.

In the next sections, details of the method are pro-
vided and evaluated, and an illustration of its practical
usability in a clinical context is proposed with an
application in maxillo-facial computer-assisted inter-
vention that requires the generation of patient-specific
tongue FE meshes. This includes the volumetric image
registration and the morphing of the atlas FE mesh.
We propose as a first step an evaluation of our method
based on a dataset of CT scans of the ribcage (in-
cluding binary Lung masks) and consisting in evalu-
ating the accuracy of the inter-subject registration
process. In a second part tongue meshes are generated
for two healthy subjects and two patients suffering
from tongue cancer, with a particular focus on the
assessment of the mesh’s quality. Being able to gener-
ate accurate patient-specific tongue meshes is interest-

Atlas-Based Automatic Generation of Subject-Specific Finite 17



ing because tongue segmentation from medical images
is challenging29 since the tongue is an extremely flexible
organ that is in contact with many other structures in
the oral cavity (cheeks, pharyngeal walls, palate, lips).
Furthermore, regarding patients with abnormal struc-
tures (in the case of tongue cancers for example), as
there will be intensity variations in the affected regions,
automatic segmentation could be even more com-
plex.28,38 Finally, the tongue model of one of the
patients is used to qualitatively evaluate functional
consequences of the surgery. The removal of the tumor
and the replacement of the corresponding tissues with
a passive flap are modeled. A tongue gesture is then
simulated and analyzed, before and after surgery.

MATERIALS AND METHODS

Medical Images and FE Meshes

CT Scans of the Ribcage

EMPIRE10 competition, as part of MICCAI 2010
Grand Challenges, has provided 30 pairs of thoracic
CT data.49 CT scans are obtained for both healthy and

diseased subjects from various scanners with a variety
of slice-spacings and image qualities. Most of the scans
have a fine sub-millimeter image resolution (around
0.7 mm isotropic). The data include binary Lung
masks which were generated automatically59 and cor-
rected manually when necessary. We considered the
first fifteen subjects to evaluate the performance of our
method. Considering the quality and resolution of the
scans, volume #2 of the EMPIRE10 database was
chosen to be the atlas.

Tongue MR Images and Atlas’ FE Mesh

Our method was also employed to generate subject-
specific FE tongue meshes. Tongue T1- or T2- weigh-
ted MR images of two healthy volunteers (S1 and S2)
and two patients suffering from tongue cancer (P1 and
P2) were obtained with a Philips 3T scanner system
(respective repetition time\echo time: 426\10.74 ms,
3195.58\80 ms, 2000\29.27 ms, 400\10 ms). The image
volume consisted of 32 sagittal slices with a 256 9 256
scan matrix and voxel dimensions of 1 9 1 9 5 mm
for S1, 72 sagittal slices with a 512 9 512 scan matrix
and voxel dimensions of 0.45 9 0.45 9 2 mm for S2,

Region-of-Interest (ROI) 
Segmentation

Surface Creation

Subject 3D image

Mesh-Match-and-Repair (MMRep)Subject FE Mesh

Atlas FE Mesh

FIGURE 1. Block diagram of the Mesh-Match-and-Repair (MMRep) algorighm for generation of the 3D subject-specific FE
meshes.12
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160 axial slices with a 224 9 224 scan matrix and voxel
dimensions of 1 9 1 9 1 mm for P1, and 29 sagittal
slices with a 512 9 512 scan matrix and voxel dimen-
sions of 0.5 9 0.5 9 3 mm for P2. All subjects gave
informed consent and the study had received approval
from ethical committee of Grenoble University
Hospital.

An atlas FE tongue mesh, which was previously
elaborated in our group,11 has been employed to gen-
erate subject-specific tongue FE meshes. The atlas’
mesh was designed on the basis of 3D MR images of
the vocal tract of a male subject, collected and seg-
mented in the context of another study aiming at
investigating the organization of articulatory configu-
rations in the vocal tract during speech production.3

After building a surface mesh from the segmented
images, the hex-dominant FE tongue mesh was auto-
matically generated using a method that optimizes the
process in terms of element quantity and qual-
ity.24,41,42,54 To assess the coarseness of the mesh, a
mesh sensitivity analysis was performed based on the
influence of the mesh density on the biomechanical

response of the tongue to the posterior genioglossus
muscle activation (computed as the global displace-
ment). The atlas’ mesh is made of 2180 nodes forming
3172 elements: 796 tetrahedra, 766 pyramids, 432
wedges, and 1178 hexahedra. Figure 3 shows the atlas’
MR images (25 sagittal slices with a 256 9 256 scan
matrix and voxel dimensions of 1 9 1 9 4 mm)
superimposed to the tongue FE mesh.

Volume Image Registration

A two-level 3D image registration is used. First, a
global transformation is calculated to provide an initial
Rigid/Affine alignment. Then, a nonrigid method is
used to establish the voxel-wise correspondence
between the two volumes.

Two popular non-rigid diffeomorphic registration
methods were proposed in the literature: (1) free-form
deformations (FFDs), which are modeled by B-
splines,55 and (2) the diffeomorphic Demons, which is
a nonparametric method based on Thirion’s Demons
algorithm.60 FFDs-based registration algorithms are

Subject 3D Image

Atlas 3D Image

Atlas to Subject 
3D Image Registration

Atlas FE Mesh

Morphing the Atlas FE Mesh Using 
the Obtained Displacement Fields

Subject FE Mesh

3D Displacement Fields

FIGURE 2. General dataflow proposed to generate 3D subject-specific FE meshes.
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controlled by the underlying interpolation function,
which provides more regular displacement fields than
Demons-based approaches. Our method uses the same
FFDs-based method as.12 In addition, the model is
reformulated using discrete Markov random fields
(MRF) (see below for details).26,34 In the next sections,
the explanations of the diffeomorphic FFDs, their
implementation and the employed optimization meth-
od are explained.

Free-Form Deformations

Non-rigid registration algorithms based on FFDs
map each voxel of the atlas’ image into the corre-
sponding voxel in the subject’ image using a defor-
mation field that is optimally computed. The basic idea
is to characterize deformations based on a grid of
control points that are uniformly distributed
throughout the fixed image’s voxel grid (herein the
subject’s image). These control points partition the
volume into equally sized regions (called tiles). The
transformation model is a multilevel formulation of a
FFD based on tensor product of B-splines. B-splines
enable interpolating the dense deformation field from a
given set of control points. Let us denote the domain of
the image volume as X ¼ fðx; y; zÞj0 � x<X; 0 � y<
Y; 0 � z<Zg. Let G denote a virtual deformable grid
with spacings dx; dy; dz; which is superimposed on the

image volume. The nonlinear displacement field D is
computed for each image point x ¼ ðx; y; zÞ by B-
spline interpolation of the displacements of the grid
control points:

DðxÞ ¼
X3

l¼0

X3

m¼0

X3

n¼0

BlðuÞBmðvÞBnðwÞdiþl;jþm;kþn; ð1Þ

where i, j, and k denote the coordinates of the tile
containing x, and u, v, and w are the local coordinates of

(x, y, z) within its housing tile: i ¼ x=dxb c, j ¼ y=dy
� �

,

k ¼ z=dzb c, u ¼ x=dx � x=dxb c, v ¼ y=dy � y=dy
� �

,

w ¼ z=dz � z=dzb c (ºß means rounding). Bl and d

respectively represent the lth basis function of the B-
spline interpolation and the displacement of the grid
control points. Thus, diþl;jþm;kþn is the spline coefficient

defining the displacement for one of the 64 control
points that influence the image point x within tile
(i, j, k). Indeed, the B-splines serve as a weighted aver-
aging function for the set of control points. Finally, the
transformation of x can be computed by

TðxÞ ¼ xþDðxÞ ð2Þ

Given the source (J) and target (I) volumes, one seeks
the optimal transformation by posing an energy min-
imization problem where the objective function is de-
fined by a matching criterion S:

FIGURE 3. (a) Atlas’ MR data superimposed with the 3D atlas’ FE tongue mesh, (b) Side view, (c) isometric view and (d) front view
respectively of the 3D FE tongue mesh.
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bT ¼ argmin
T

SðI; J � TÞ ð3Þ

Depending on the application S may be either sum of
absolute/squared differences (SAD/SSD), normalized
mutual information,43 normalized correlation coeffi-
cient, correlation ratio,53 or any other user-defined
function.

The performance of registration methods based on
FFDs is limited by the resolution of the control point
grid, which generally determines the degrees of free-
dom of the registration function and is linearly related
to the computational complexity:55

– A coarse control point spacing enables model-
ing global and intrinsically smooth deforma-
tions.

– A finer control point spacing enables modeling
more localized and intrinsically less smooth
deformations.

To refine the deformation field, a multi-level FFD is
used, which covers a wide range of transformations.
The algorithm starts from a coarser control point
spacing; when the algorithm reaches its optimal state,
the control point spacing is divided by two (in each
dimension). For each level of control point spacing,
several optimization cycles are performed to model a
large deformation. Within each cycle, an elementary
transformation field is generated and the overall
transformation can be computed as:

TðxÞ ¼ TNJ

J � � � � � T1
J

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{GJ

� � � � � TN1

1 � � � � � T1
1

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{G1

;
ð4Þ

where Gj; j ¼ 1; . . . ; J are successive grid refinements,

and Ti
j; i ¼ 1; . . . ;Nj are elementary deformations

generated during each optimization cycle at grid level j.
The initial control point spacing in the FFDs should be
determined according to the application. As investi-
gated in Ref. 26 when there is a good global corre-
spondence between the volumes (provided by Rigid/
Affine registration), employing an initial spacing of
20 mm enables capturing the key-features of the geo-
metric structures accurately.26 However, in case of
organs with large anatomical differences such as the
lungs or the feet, starting with a coarser control point
spacing could be more efficient, since it enables the first
level of the FFDs to include a reliable account of the
Rigid/Affine transformation, providing thus a good
initialization for the subsequent levels of the FFDs.

As the FFDs are modeled by B-splines, the trans-

formation model inherently satisfies the C1-differen-
tiability. In order to preserve the bijectivity of the
transformation, each elementary transformation is
estimated by restricting the displacement of control

points to 0.4 times the current control point spacing.55

Since the overall transformation is computed as a
combination of the elementary ones, it will be likewise
a diffeomorphism. However, when the multilevel-FFD
reaches its final levels, in which the control point grid
has a high spatial resolution, the FFD models much
more localized deformations; and it is likely that the
distance between the neighboring nodes in the atlas FE
mesh is much larger than the control point spacing. So,
it is worth pointing out that although the restriction of
displacements provides a non-folding property locally
at every point, it certainly does not lead to regular
meshes, especially in case of FE meshes with large
elements. Therefore, an additional regularization term
is considered:

RðTÞ ¼
X

p2G

X

q2NðpÞ
j dp � dq j2; ð5Þ

where dp is the displacement of the control point p in
the virtual deformable grid G, and N(p) is the set of
control points located in the neighborhood of p, and
defines the edges between p and other points in the
control grid. This regularization term, leads neigh-
boring control points to move in the same direction.
Hence, the total cost function includes two terms: a
matching criterion (S) which quantifies the level of
alignment between the two image volumes, and a
regularization term (R) which imposes a smoothness
constraint. The optimal transformation is determined
by posing an energy minimization problem where the
objective function is a weighted sum of S and R:

bT ¼ argmin
T

fSðI; J � TÞ þ kRðTÞg; ð6Þ

where k is a weighting factor controlling the influence
of the regularization term. To obtain deformation
parameters, a wide range of optimization strategies can
be employed, including gradient descent,56 Newton’s
method,45,64 Powell’s method,52 and discrete opti-
mization.51 Since the atlas’ and subject’s medical
images can come from different modalities (e.g., CT or
MRI), various similarity measures might be consid-
ered. In order to avoid problems associated with
the computation of the derivatives of the Similarity
Measure to be optimized, we implemented a discrete
optimization method, namely a MRF-based opti-
mization.34

MRF-Based Optimization

An MRF-based optimization projects the objective
function back to the level of the control points, in
order to transform it into a function of control points
displacements instead of voxels displacements. Then,
the displacement space is sampled and the quantized
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displacement vectors are associated with labels. Thus,
the optimization problem is converted to a ‘‘labeling
problem’’. Finally, the optimization technique26,34 se-
lects a group of displacement vectors that collectively
optimize the objective function.

The primary task is the reformulation of the opti-
mization problem (Eq. 6) into a multi-labeling problem
that can be expressed using first-order MRFs.23,39

Generally a ‘‘labeling problem’’ consists of a set of ob-
jects to be classified and a set of classes or labels. The
objective of such a problem is to assign a label to each
object, in a way that is consistent with some observed
data that may contain pairwise relationships among the
objects to be classified.9,17,39 MRFs are used to model
the statistical properties in the framework of the prob-
ability theory. In theMRFsmodel, the probability of an
object to belong to a specific class depends not only on its
own features but also on the labels of its neighboring
objects. These objects are considered as random vari-
ables whose values result from probabilistic experi-
ments. InMRFs, the set of labels is interpreted as events
that can happen to the random variables.39 Considering
the registration problem, a random variable is associ-
ated with every control point, and ‘‘labels’’ correspond
to the displacements of the control points. The contin-
uous displacement space of the control points is quan-
tized to generate a discrete set of displacement vectors

H ¼ fd1; . . . ; dig, and each displacement vector is asso-

ciated with a label (L ¼ fl1; . . . ; lig). Assigning a label
(lp) to a control point (p) is equivalent to applying the

displacement vector dlp to the control point p. The dis-
placements along the coordinate axes are sparsely sam-
pled by a factor of n, from 0 to 0.4 times the current
control point spacing.55 Thus 6n+1 labels (displace-
ments along the sixmain axes plus the zero-displacement
vector) are considered. The problem can be reformu-
lated using the energy of first-order MRFs, which con-
sists of sums of unary and pairwise potential functions:

EMRFðlÞ ¼
X

p2G
VpðlpÞ þ k

X

p2G

X

q2NðpÞ
Vpqðlp; lqÞ; ð7Þ

where l is the labeling that we are looking for, Vpð:Þ is a
unary potential function that corresponds to the energy
of assigning a label to the control point p, indepen-
dently of all other control points.39 The unary potential
term summed over all the control points encodes the
matching criterion (S) in Eq. (6). Vpqð:Þ is a pairwise

potential function that evaluates the consistency
between the labels of neighboring control points. It
measures the cost of assigning displacements to the
neighboring control points p and q. Therefore, the
pairwise potential term summed over all the neigh-
boring control points corresponds to the regularization
term (R) in Eq. (6). It is important to note that the

matching criterion (S) is defined at the image level.
This criterion must therefore be projected back to the
control points level using a weighting function so that
the energy optimization problem could be mathemat-
ically reformulated using MRFs:

bgðjx� pjÞ ¼ gðjx� pjÞP
y2X

gðjy� pjÞ ; ð8Þ

where bgð:Þ quantifies the impact of an image pixel x to
a control point p, while gð:Þ, quantifies the influence of
a control point p to an image pixel x. The amount of
influence is related to the distance between the image
pixel x and the control point p; the farther they are, the
less is the influence, and vice versa. Herein, the gð:Þ
function is the B-spline function used in Eq. (1), that
can be interpreted as a weighting function. Therefore,
the unary potential function in the energy of MRF (in
iteration t) can be rewritten as:

VpðlpÞ ¼
X

x2X
bgðjx� pjÞ : SðIðxÞ; JðTt�1ðxÞ þ dlpÞÞ;

ð9Þ

where Tt�1 is the overall transformation from the

previous iteration and dlp is the next elementary dis-
placement of control point p. Accordingly, the unary
potential at control point p is defined as the weighted
combination of the data cost of those pixels that have
an impact on the control point p. The unary potential
function is assumed to be independent of all other
control points. Hence, it is approximated using two
simplifications.26 First, the elementary displacement of
each image point x (Eq. 1) is computed by a direct

translation of dlp (the displacement of control point p),
instead of resulting from the interpolation between the
displacement of the neighboring control points. Sec-
ond, with the aim to decrease the approximation error,
the overlapping area for each control point is reduced
by replacing the B-spline weighting functions in bgð:Þ
(Eq. 8) with linear ones. It should be reminded that B-
spline functions are still kept to generate smooth
transformation.

To have a full regularization, the deformation fields
generated from the previous iterations are considered
in the pairwise potential function as below:

Vpqðlp; lqÞ ¼j ðRðpÞ þ dlpÞ � ðRðqÞ þ dlqÞ j; ð10Þ

where Rð:Þ projects the current displacement fields on
the level of the control points as:

RðpÞ ¼
X

x2X
bgðjx� pjÞDðxÞ ð11Þ

Various optimization strategies can be applied to find
the registration parameters. An efficient algorithm
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called FastPD is used in this study (for a full expla-
nation of this method see Ref. 34). Some parameters
controlling the discretization of the solution space have
to be set. The first parameter is the maximum value of
displacement which has been set to 0.4 times the cur-
rent control point spacing.55 To refine the deformation
field, a multi-level FFD is employed to cover a wide
range of transformations; for each level of control
point spacing, a certain number of optimization cycles
(the second parameter, O) is performed to model a
large deformation. It should be noted that keeping the
initial displacement set for each cycle does not bring
any further improvement.26 Therefore, each optimiza-
tion cycle is done using a new set of displacement
vectors. In this way, the initial maximum value of
displacement is reduced by a scaling factor (the third
parameter, a), and the new range is re-sampled using
the same method (with a specific number of steps, the
fourth parameter, n). For the results provided later, the
parameters are set to O ¼ 5, a ¼ 0:67 and n ¼ 5 .26

Mesh Morphing

The atlas-to-subject volumetric image registration
provides a pair of transformations that establishes a
one-to-one correspondence between the two volumes
(atlas J and subject I). The first one is a Rigid/Affine
transformation (TRigid=Affine) that approximates the

global transform between the two volumes, whereas
the second one is a nonrigid transformation (TNonrigid)

that locally refines the deformations. The next step
towards atlas-mesh morphing consists in defining the
total transformation by combining the rigid and non-
rigid transformations:

TTotal ¼ TNonrigid � TRigid=Affine ð12Þ

Depending on the type of atlas’ FE mesh, various
methods of mesh morphing could be employed to
generate subject-specific FE meshes from the 3D dis-
placement fields.4,5,12,15,35,57,68 In this paper our
method will be used for linear FE meshes, in which
nodes are connected by straight lines or edges. For this
kind of mesh the mesh morphing procedure moves the
nodes along the appropriate displacement fields (TTotal)
while keeping the connectivities, preserving thus the
topology of the atlas’ mesh.

Evaluation

Image Registration Assessment

In order to quantitatively evaluate our method,
manual segmentations of the atlas’ and target’s organs
are used. After the registration between the atlas’ and
target’s images, the obtained transformations are em-

ployed to deform the atlas’ binary mask onto the tar-
get’ images. Then, the Dice16 and volumetric overlap
metrics, Hausdorff distance, and mean absolute sur-
face are computed.25 The Dice (D) and overlap frac-
tion (O) are volumetric measures that compute the
relative overlap of two volumes. For each subject, the
Dice and volumetric overlap of the atlas-transformed
mask (VAtlas�trans) and the reference segmentation
(VManual) are respectively defined as

DðVAtlas�trans;VManualÞ ¼
2jVAtlas�trans \ VManualj
jVAtlas�transj þ jVManualj

ð13Þ

OðVAtlas�trans;VManualÞ ¼
jVAtlas�trans \ VManualj
jVAtlas�trans [ VManualj

ð14Þ

Both D and O values range from zero to one. A value
close to one is desirable and means that there is a
perfect match between the volumes. However, both
volumetric measures depend on the size and shape
complexity of the objects and on the volume sampling.
Large objects such as the Lungs should be less sensitive
to small local errors, which may exist at the bound-
aries. Therefore, the Hausdorff (H) distance is also
considered as an evaluation of the similarity of the
objects’ surfaces. Given two surfaces SAtlas�trans and
SManual, the Hausdorff distance is defined as

HðSAtlas�trans;SManualÞ ¼ maxðhðSAtlas�trans;SManualÞ;
hðSManual;SAtlas�transÞÞ

ð15Þ

where

hðSAtlas�trans;SManualÞ ¼ max
p2SAtlas�trans

ðdminðp;SManualÞÞ;

ð16Þ

hðSManual;SAtlas�transÞ ¼ max
p2SManual

ðdminðp;SAtlas�transÞÞ:

ð17Þ

The Hausdorff distance is overly sensitive to outliers. A
single outlier leads to misleading results. However, it
can provide useful information in conjunction with
other metrics such as the mean absolute surface dis-
tance ðMÞ, which is defined as

MðSAtlas�trans;SManualÞ

¼ dminðSAtlas�trans;SManualÞþ dminðSManual;SAtlas�transÞ
2

ð18Þ

where dminðSAtlas�trans;SManualÞ is the average minimum
distance from all points on the surface SAtlas�trans to the
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surface SManual, and vice-versa for dminðSManual;
SAtlas�transÞ. M indicates how much the two surfaces
differ on average.

Mesh Quality Assessment

The regularity and quality of the deformed meshes
are evaluated based on the Jacobian matrix.33 The
Jacobian matrix is the fundamental quantity describing
all the first� order mesh properties (length, areas and
angles) of interest.33 The regularity assessment is a
function of the Jacobian matrix determinant (detJ, also
called the Jacobian) and evaluates whether the em-
ployed FEmesh can be used for numerical analysis. The
Jacobianmust be checked for all the elements of the FE
mesh as it is influenced by the configuration of the ele-
ment nodes. Within each element, the Jacobian is
computed for each node, and the element (and subse-
quently the FE mesh) is classified irregular if one of the
nodes has a zero or negative value. It is worth pointing
out that the Jacobian measures the distortion of the
actual mesh element with respect to its reference con-
figuration, but not the overall distortion information.
To deal with this problem, the quality of each element
can be determined at the level of its nodes (e.g., node n)
by a ratio of nodal Jacobian value to the maximal Ja-
cobian value among those computed at all element
nodes (thus interpreted as a global distortion informa-
tion). Such a ratio measures the node quality within its
element (e) and is called Jacobian Ratio (JR):33

JRe
n ¼

detJðnÞ
max
n2e

fdetJðnÞg ð19Þ

The JR values range from zero to one. Having a high
(respectively low) value for JRe

n means that the element

(e) has a high (respectively poor) quality at node n. The
JR is computed for all the element nodes and the
minimum value is returned as an indicator of element
quality (JRe

min). In the ideal state, all elements of a

given mesh are expected to have high JR values;
however in many cases this is impossible. That is why,
for example, the commercial FE analysis software

ANSYS sets a minimal value of 0:03 for JR.31 It
should be noted that JR is not relevant for tetrahedral
elements as the Jacobian value is the same for all nodes
of a tetrahedron which means that the JR value is
always one no matter how good or bad the element is.
Therefore, we propose to measure the quality of

tetrahedral elements by computing Q ¼ 2
ffiffiffi
6

p
Rin=L (Rin

being the radius of the inscribed-sphere of the tetra-
hedron, and L the longest edge length18,21). Similarly
to JR computed on hexahedra, wedges and pyramids,
the Q values computed on tetrahedra range from zero
to one for low and high quality elements, respectively.

Finally, in order to complete the evaluation with
quality criteria that can be computed on any type of
element (hexahedra, tetrahedra, wedges and pyra-
mids), we have used ANSYS software2 to compute
Aspect Ratio and Maximum Corner Angle for each
element of the meshes.

RESULTS

Before showing the results of mesh generation, it is
important to illustrate how efficiently the regulariza-
tion term prevents the introduction of foldings in the
deformed meshes. Figure 4 shows the results of
applying two transformations that are obtained with-
out and with the regularization term. To have a clear
understanding, only a section of the atlas’ tongue mesh
(including 11 elements) is selected and depicted. As can
be seen, the level of mesh distortions is dramatically
reduced by virtue of the regularization term. These two
examples illustrate how the regularity and quality of
the meshes can be preserved thanks to the diffeomor-
phic constraints and the regularization term. The value
of the weight k of the regularization term (Eq. 6) has to
be set according to the application and to the measure
of similarity. Generally, a higher k value provides a
smoother deformation thus less quality degradation,
but sharp morphological structures are modeled less
accurately. This raises the issue of the level of accuracy
provided by our method. To address this issue we have
applied our method to a data set of ribcage CT scans
and compared the results with the manual segmenta-
tion of the Lungs also available in the data set.

Ribcage CT Image Registration

Subject-specific Lung’s masks were generated with
our method for 12 subjects. Since Lungs are large
objects, the non-rigid registration was applied in two
steps. First, the SAD similarity measure with a high
value of k (i.e., regularization weight) is employed in
order to capture the main geometric properties of the
target Lungs (with a very coarse initial control point
spacing of 60 mm). Second, in order to get small details
of the shape, the similarity measure is changed into
SSD, and k is decreased and an initial control point
spacing of 25 mm is used. Figure 5 shows the result of
the Lung registration for a typical CT scan. Manual
Lungs segmentation in the atlas’ image and in the
target image are shown respectively in Fig. 5(a) and
5(b). The Lung’s mask provided by our method is
superimposed on the manual segmentation in Fig. 5(c).
We observe a good agreement between both masks.
However, the sharp regions, especially at the bottom of
the Lungs, are captured less accurately. The Dice (D),
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(b)(a) (c)

(f)(d) (e)

Regularization effect at the level of image

Regularization effect at the level of mesh

FIGURE 4. Effect of the regularization term: at the level of the image, (a) input image and the distribution of control points, (b)
deformed input image without the regularization term and distribution of control points after registration, (c) deformed input image
using the regularization term and distribution of control points after registration; and at the level of the mesh, (d) a section of the
atlas FE Mesh, (e) deformed mesh without the regularization term (f) deformed mesh using the regularization term (different views
are provided in each row: side, front, and back views, from top to bottom).
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overlap fraction (O), Hausdorff distance (H), and
mean absolute surface (M) are calculated for all sub-
jects. Means and standard deviations of these variables
across the subjects are as follows: D ¼ 0:98� 0:01,
O ¼ 0:96� 0:01, H ¼ 34:25� 7:75 (in mm), and
M ¼ 0:98� 0:26 (in mm). The values of the average
quality measures (D, O, and M) show that our method
captures efficiently the geometry of target organs;
however, high values of H are observed, which show
the existence of some strong differences between both

masks at some places and/or for some subjects. This
will be discussed later in this paper.

FE Tongue Meshes Generation

The subject-specific tongue FE meshes are shown in
Fig. 6. The data set includes two healthy subjects and
two patients suffering from tongue cancer. The regu-
larity and quality of generated meshes are assessed

FIGURE 5. Result of the Lungs CT image registration: (a) Manual Lung segmentation in the atlas’ CT-image (at each column, from
left to right: front view, back view, and 3D ribcage CT reconstruction surrounding the Lung’s manual segmentation), (b) Manual
Lung’s segmentation in a subject’s CT-image (at each column, from left to right: front view, back view, and 3D ribcage CT
reconstruction surrounding the Lung manual segmentation), (c) Atlas-driven subject-specific Lungs, in grey, superimposed on the
manual segmentation, in red (at each column, from left to right: front view, back view, and a cut-out to the region having less
accuracy).
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using the JR and Q (for tetrahedra). The results are
presented in Table 1. None of the meshes contains any
irregular element (JR<0 or Q ¼ 0). To have a more
detailed assessment of mesh quality, the elements are
classified into six categories. None of the meshes in-
cludes any element with a JR or Q smaller than the
threshold 0.03 considered to characterize unaccept-
able poor quality. Also, the obtained values for Aspect
Ratio and Maximum Corner Angle are reported in
Table 2, indicating that all deformed meshes are reg-
ular. Our method is efficient to generate subject-
specific FE meshes while preserving the regularity and
quality of the elements.

Figure 7 focuses on the results obtained for subject
S1. The external contours of the FE mesh are super-
imposed with sagittal, axial and coronal slices ex-
tracted from the MR exam. The enlarged tongue
regions for some slices are provided in Fig. 7(d)–7(g).
In addition, elements-size-distribution for the atlas FE
tongue mesh and their nodal displacements, when our
method is applied to S2 depending on whether the
constraints are used or not, are shown in Fig. 8. The
generated mesh using the pure non-rigid transforma-
tions contains 58 irregular elements. Volumes of all
elements are computed and plotted in Fig. 8(a),
according to their element-order within the original
mesh file. Figure 8(b) displays the difference (in mm)
between the maximal and the minimal nodal dis-
placements for all element. This gives an interesting
information since large differences are likely to be
associated with strong geometrical distortions of the

elements. Figure 7 focuses on the results obtained for
subject S1. The external contours of the FE mesh are
superimposed with sagittal, axial and coronal slices
extracted from the MR exam. The enlarged tongue
regions for some slices are provided in Fig. 7(d)–7(g).
In addition, elements-size-distribution for the atlas FE
tongue mesh and their nodal displacements, when our
method is applied to S2 depending on whether the
constraints (i.e., the regularization term) are used or
not, are shown in Fig. 8. The generated mesh using the
pure (i.e., without the regularization term) non-rigid
transformations contains 58 irregular elements. Vol-
umes of all elements are computed and plotted in
Fig. 8(a), according to their element-order within the
original mesh file. Figure 8(b) displays the difference
(in mm) between the maximal and the minimal nodal
displacements for all elements. This gives an interesting
information since large differences are likely to be
associated with strong geometrical distortions of the
element.

Qualitative Evaluation with a Patient-Specific Tongue
Model

For patient P2, the activation of the posterior genio-
glossus (GGp) muscle (one of the most important
muscles of the tongue) is simulated before and after
surgery. This muscle compresses the tongue in its lower
part and its activation propels the tongue frontwards
and upwards in its front part, as a consequence of the
quasi-incompressibility of the tissues. Its role in speech

TABLE 1. Mesh quality distribution for the atlas’ and subject’s FE tongue meshes generated by our method; the regularities and
qualities of the elements are quantified by computing JR (for pyramids, wedges, and hexahedra) and Q (for tetrahedra).

Meshes # of irregular elements Mesh quality (%)

<0.03 0.03–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

Atlas 0 0 24.28 2.08 13.30 15.32 45.32

S1 0 0 24.28 3.40 14.50 17.97 39.85

S2 0 0 24.28 3.15 14.00 15.26 43.31

P1 0 0 24.28 2.40 16.20 13.30 43.82

P2 0 0 24.28 5.80 12.86 18.63 38.43

TABLE 2. Mesh quality assessment for the atlas’ and subject’s FE tongue meshes generated by our method.

Meshes
Aspect ratio Maximum corner angle

Warning count Error count Warn + Err (%) Warning count Error count Warn + Err (%)

Atlas 0 0 0.00 0 0 0.00

S1 0 0 0.00 4 0 0.13

S2 2 0 0.06 2 0 0.06

P1 0 0 0.00 0 0 0.00

P2 2 0 0.06 2 0 0.06

Aspect Ratio: WARNING TOLERANCE = 20, and ERROR TOLERANCE = 1000000; Maximum Corner Angle: WARNING TOLERANCE =

165 (in degree), and ERROR TOLERANCE = 179.9 (in degree).
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FIGURE 6. Result of atlas’ FE mesh morphing using our method: (a) Atlas’ FE tongue mesh (b) Subject-specific FE tongue mesh
(subject S1), (c) subject-specific FE tongue mesh (subject S2), (d) Patient-specific FE tongue mesh (patient P1), (e) Patient-specific
FE tongue mesh (patient P2).
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production is crucial since it is strongly involved in the
production of the phonemes / i / and / s / , which
exist in all the world languages. Muscle activation is
modeled using the FE formulation of the Hill muscle
model proposed by.8,50 This model was implemented
using the USERMAT functionality of ANSYS. For
the passive response, we used a simplified 5-parameter
Mooney-Rivlin hyperelastic model with constitutive
parameters (C10 = 1037 Pa, C20 = 486 Pa and bulk
modulus K = 2.107 Pa) derived from previous work.11

As concerns boundary, the nodes located in the front
(which should be in contact with the mandible) and at

the bottom of the tongue are fixed (i.e., all 6 degrees of
freedom are fixed u1 = u2 = u3 = r1 = r2 = r3 = 0).
The assignment of the muscle fiber direction in each
element in the tongue mesh is performed automatically
based on the fibers direction extracted for the atlas’
mesh in a previous work.24 Tongue surgery consisted
of a hemi-glossectomy during which half the upper
tongue, mainly made of muscle tissues, has been
removed and reconstructed with a flap having passive
mechanical properties. It is accounted for in the tongue
model by modifying the biomechanical properties of
the excised tongue tissues: the active material proper-

FIGURE 7. Mesh derived tongue contours superimposed on the MR image: (a) 3D subject-specific FE tongue mesh (Normal #1),
(b) Sagittal views (mid-sagittal to the lateral side), (c) Axial views (inferior to superior), (d) Coronal views (anterior to posterior), (e)
enlargement of the tongue region in a sagittal slice, (f) enlargement of the tongue region in the coronal slice, (g) enlargement of the
tongue region in an axial slice.
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ties of the GGp elements that are removed and
reconstructed are replaced with passive material
properties.

Figure 9 plots the response of the tongue model to
the activation of the GGp before and after the hemi-
glossectomy. Both the distribution of the Von mises
equivalent strain in the GGp muscle and the dis-
placement of the tongue are provided.

DISCUSSION

In this paper an original method for automatic
subject-specific FE mesh generation is proposed and
evaluated. Contrary to the previous efforts in the lit-
erature, our method does not require any formal
extraction of prior-knowledge on the shape of the
target organ, no meshing algorithm. We propose to use
an image-based registration method to deform an atlas
FE mesh and to automatically generate subject-specific
meshes.

Our method was first evaluated on a publicly
available set of images of the ribcage by comparing
manual segmentations of the lungs for various subjects
with the subject-specific Lungs masks obtained with

our method. Two steps were used, the first one with a
parameterization adapted to the capture of global
geometrical properties and the second one with a
parametrization adapted to the capture of finer details.
The match between results provided by both methods
is very good in average as shown by the Dice, the
overlap fraction and the mean average distance.
However, the Hausdorff distance shows that strong
differences might exist at some places. A careful anal-
ysis of our results shows that these strong differences
occur in sharp regions that exist only in the atlas’ or in
the subject’s images. This is a well-known problem
in registration methods, as shown for example in
Refs. 22,40,44,65. Applying a third registration step
with less strong constraints might be useful. Another
idea would be to use a third registration step that does
not include any mesh quality preservation constraints.
These possible solutions will be investigated in a future
work, in particular to check whether the quality of the
elements in the deformed meshed is still preserved.
Also, multi-atlas approaches can partly overcome
some of these errors by selection of the most similar
atlas among a large database.1 Figure 6 illustrates well
the capacity of the method to generate various kinds of
speaker-specific tongue anatomy at rest. From a more

120(a)
100

80

60

40

20

0
0 400 800 1200 1600 2000 2400 2800 3172

(b)

Element number

0

1

2

0 400 800 1200 1600 2000 2400 2800 3172

Element number

3

4

5

6
7

FIGURE 8. Representation of elements size in the atlas FE tongue mesh, and their displacements with and without constraints: (a)
Elements-volumes-distribution for the atlas FE tongue mesh (in mm3), (b) Maximum–Minimum nodal displacement (in mm) within
each element for subject S2 in the mesh generated with the constraints (purple) and in the mesh generated without constraints
(green), which contains 58 irregular elements (JR<0 or Q ¼ 0).

BIJAR et al.30



quantitative point of view, the quality assessments re-
veal that the regularity and quality of the meshes are
preserved. Contrary to Mesh-Morphing methods that
sometimes need to post-process the mesh because of
irregular elements,13 all generated meshes are regular

and can be used for FE analysis. Moreover, the quality
of the mesh is almost maintained. Indeed, the per-
centage of elements within the quality range of 0.8–1 is
slightly decreased by less than 7% (Table 1). This small
reduction in the number of high quality elements re-

GGp Elements

GGp Activation Before Surgery 

Von Mises Equivalent strain (%) Von Mises Equivalent strain (%)

Displacement (mm) Displacement (mm)

(a) (b) (c)

(d) (e)

(f) (g)

Before Surgery After Surgery

GGp Activation After Surgery 

FIGURE 9. Biomechanical response of the tongue model to the activation of the GGp before and after surgery: (a) Sagittal view of
the tongue showing the implementation of the GGp, (b) Front view of the tongue before surgery , (c) Front view of the tongue after
surgery; the right part of the muscle has been removed and replaced by passive tissues, (d) Distribution of the Von Mises
equivalent strain in the GGp after its activation in pre-surgery condition, (e) Distribution of the Von Mises equivalent strain in the
GGP after its activation in post-surgery condition, (f) Displacement map in the tongue after GGP activation in pre-surgery con-
dition, (g) Displacement map in the tongue after GGP activation in post-surgery condition.
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sults in small increment in the lower quality ranges
(maximally 3.31, 2.9, , and 3.72% for the ranges of
0.6–8, 0.4–0.6, and 0.2–0.4 respectively).

Figure 7 plots the contours of one generated mesh
superimposed with the corresponding MR slices. The
various slices displayed in the figure illustrate the effi-
ciency of the method since the contours fit well with
the observed boundaries of tongue tissues. Moreover,
for some slices for which it is quite difficult to see
tongue contours (the lateral sagittal views close to
cheeks’ tissues or tongue basement), registration
method is able to suggest tongue contours thus main-
taining a coherent structure for the whole 3D mesh. In
Fig. 8 results of our method and the pure non-rigid
registration are shown for S2. The maximal difference
between the maximum and the minimum displace-
ments within each element is decreased from 6.69 to
2.87 mm. This means that the probability of strong
element distortion is significantly reduced and that the
employed constraints have managed to control the
movement of nodes within the elements.

Focusing on patient P2, we have proposed to sim-
ulate some functional consequences of a tongue sur-
gery. Whereas the relevance of such use of a
biomechanical model for computer assisted surgery
has already been provided,10 the objective here was to
propose an illustration of a tentative fully automatic
procedure compatible with the clinical constraints.
Therefore, starting from an MRI exam of a patient, we
were able to automatically generate an FE model of
that patient. All the information included in the tongue
atlas model was automatically transferred in the model
of the patient. It was thus straightforward to simulate
the activation of the posterior genioglossus muscle.
The corresponding results provided by Fig. 9 confirm a
clinical observation, namely the fact that, after a hemi-
glossectomy, the tongue response is no longer sym-
metric. The results also predict that the patient might
have difficulties to move the tongue in the front and
upper part of the oral cavity since the simulated dis-
placements after surgery are significantly lower than
the ones simulated before hemiglossectomy.

The atlas-based subject-specific FE model genera-
tion method proposed in this paper seems to provide
efficient results that were qualitatively and quantita-
tively evaluated on four subjects. Tongue models were
used here since it is a clinical case for which the manual
delineation of tongue contours is a particularly com-
plex and sometimes impossible task.28 The counterpart
of this choice is that it is impossible to design a ‘‘gold
standard’’ case to which we could compare the results
proposed by our method. Indeed, since boundaries are
difficult to identify for some regions of the tongue (e.g.,
at the bottom and laterally), we were not able to ask an
‘‘expert’’ to segment a whole tongue and to guaranty

that this segmentation would be considered as the
‘‘gold standard’’. In any case it seems clear that when
the disease is advanced and the size of tumors are high,
the general shape of the target organ is divided into
sub-shapes. In other words, the tumors can be con-
sidered as new organs inside the target organ that
disturb the registration process. To sum up, when the
original shape is still remained or there is no significant
tumor size progression, the proposed method, that
employs a multi-level FFDs, is able to capture the
geometry of the organs well.

Our method still needs to define the weighting factor
lambda that controls the influence of the regularization
term. This highly depends on the image modality as
well as the type of organ. Our method needs therefore
definitively to be more extensively evaluated on a lar-
ger set of tongue MR images.
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